

TensorGrip TC42 500ml Aerosol Spray Adhesive QUIN GLOBAL ASIA PACIFIC

Version No: 5.6

Chemwatch Hazard Alert Code: 4

Issue Date: **20/12/2022**Print Date: **20/12/2022**S.GHS.AUS.EN

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements

Product Identifier	
Product name	TensorGrip TC42 500ml Aerosol Spray Adhesive
Chemical Name	Not Applicable
Synonyms	Not Available
Proper shipping name	AEROSOLS (contains LPG (liquefied petroleum gas))
Chemical formula	Not Applicable
Other means of identification	Not Available

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses Adhesives

Details of the manufacturer or supplier of the safety data sheet

Registered company name	QUIN GLOBAL ASIA PACIFIC			
Address	lincksman Street Queanbeyan, NSW 2620 Australia			
Telephone	6175 0574			
Fax	Not Available			
Website	www.quinglobal.com			
Email	sales@quinglobal.com.au			

Emergency telephone number

Zine geney telephone number			
Association / Organisation	CHEMWATCH EMERGENCY RESPONSE		
Emergency telephone numbers	+61 1800 951 288		
Other emergency telephone numbers	+61 3 9573 3188		

Once connected and if the message is not in your preferred language then please dial 01

SECTION 2 Hazards identification

Classification of the substance or mixture

Poisons Schedule	Not Applicable			
Classification [1]	Serious Eye Damage/Eye Irritation Category 2A, Specific Target Organ Toxicity - Single Exposure (Narcotic Effects) Category 3, Skin Corrosion/Irritation Category 2, Aspiration Hazard Category 1, Hazardous to the Aquatic Environment Long-Term Hazard Category 3, Aerosols Category 1			
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI			

Label elements

Hazard pictogram(s)

Signal word

Danger

Hazard statement(s)

H319

Causes serious eye irritation.

Version No: 5.6 Page 2 of 16 Issue Date: 20/12/2022 Print Date: 20/12/2022

TensorGrip TC42 500ml Aerosol Spray Adhesive

H336	cause drowsiness or dizziness.			
AUH044	Risk of explosion if heated under confinement.			
H315	Causes skin irritation.			
H304	May be fatal if swallowed and enters airways.			
H412	Harmful to aquatic life with long lasting effects.			
H222+H229	Extremely flammable aerosol. Pressurized container: may burst if heated.			

Precautionary statement(s) Prevention

P210	(eep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.			
P211	Do not spray on an open flame or other ignition source.			
P251	Do not pierce or burn, even after use.			
P271	Use only outdoors or in a well-ventilated area.			
P261	Avoid breathing gas			
P273	Avoid release to the environment.			
P280	Wear protective gloves, protective clothing, eye protection and face protection.			
P264	Wash all exposed external body areas thoroughly after handling.			

Precautionary statement(s) Response

P301+P310	F SWALLOWED: Immediately call a POISON CENTER/doctor/physician/first aider.				
P331	Do NOT induce vomiting.				
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.				
P312	Call a POISON CENTER/doctor/physician/first aider/if you feel unwell.				
P337+P313	If eye irritation persists: Get medical advice/attention.				
P302+P352	IF ON SKIN: Wash with plenty of water and soap.				
P304+P340	IF INHALED: Remove person to fresh air and keep comfortable for breathing.				
P332+P313	If skin irritation occurs: Get medical advice/attention.				
P362+P364	Take off contaminated clothing and wash it before reuse.				

Precautionary statement(s) Storage

P405	Store locked up.	
P410+P412	Protect from sunlight. Do not expose to temperatures exceeding 50 °C/122 °F.	
P403+P233	P403+P233 Store in a well-ventilated place. Keep container tightly closed.	

Precautionary statement(s) Disposal

Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight] Name				
79-20-9	30-50 methyl acetate				
64742-49-0.	10-20 naphtha petroleum, light, hydrotreated				
68476-85-7.	30-50 LPG (liquefied petroleum gas)				
Legend: 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; Classification drawn from C&L * EU IOELVs available					

SECTION 4 First aid measures

Description of first aid measures

If aerosols come in contact with the eyes:

Eye Contact

- Immediately hold the eyelids apart and flush the eye continuously for at least 15 minutes with fresh running water.
- Figure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Transport to hospital or doctor without delay.
- ▶ Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

Skin Contact

If solids or aerosol mists are deposited upon the skin:

- Flush skin and hair with running water (and soap if available).
- Remove any adhering solids with industrial skin cleansing cream.
- DO NOT use solvents.
- ▶ Seek medical attention in the event of irritation.

Version No: **5.6** Page **3** of **16** Issue Date: **20/12/2022**

TensorGrip TC42 500ml Aerosol Spray Adhesive

Print Date: 20/12/2022

Inhalation

If aerosols, fumes or combustion products are inhaled:

- Remove to fresh air.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- If breathing is shallow or has stopped, ensure clear airway and apply resuscitation, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- ► Transport to hospital, or doctor.
- Ingestion
- Immediately give a glass of water.
- First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor.
- If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus.

Indication of any immediate medical attention and special treatment needed

For petroleum distillates

- · In case of ingestion, gastric lavage with activated charcoal can be used promptly to prevent absorption decontamination (induced emesis or lavage) is controversial and should be considered on the merits of each individual case; of course the usual precautions of an endotracheal tube should be considered prior to lavage, to prevent aspiration.
- · Individuals intoxicated by petroleum distillates should be hospitalized immediately, with acute and continuing attention to neurologic and cardiopulmonary function.
- · Positive pressure ventilation may be necessary.
- · Acute central nervous system signs and symptoms may result from large ingestions of aspiration-induced hypoxia.
- After the initial episode individuals should be followed for changes in blood variables and the delayed appearance of pulmonary oedema and chemical pneumonitis. Such patients should be followed for several days or weeks for delayed effects, including bone marrow toxicity, hepatic and renal impairment Individuals with chronic pulmonary disease will be more seriously impaired, and recovery from inhalation exposure may be complicated.
- · Gastrointestinal symptoms are usually minor and pathological changes of the liver and kidneys are reported to be uncommon in acute intoxications.
- · Chlorinated and non-chlorinated hydrocarbons may sensitize the heart to epinephrine and other circulating catecholamines so that arrhythmias may occur. Careful consideration of this potential adverse effect should precede administration of epinephrine or other cardiac stimulants and the selection of bronchodilators.

BP America Product Safety & Toxicology Department

Treat symptomatically.

for simple esters:

BASIC TREATMENT

- ▶ Establish a patent airway with suction where necessary.
- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 to 15 l/min.
- Monitor and treat, where necessary, for pulmonary oedema.
- Monitor and treat, where necessary, for shock.
- DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.
- Give activated charcoal.

ADVANCED TREATMENT

- Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- Positive-pressure ventilation using a bag-valve mask might be of use.
- Monitor and treat, where necessary, for arrhythmias.
- Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary oedema.
- Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications
- ► Treat seizures with diazepam.
- Proparacaine hydrochloride should be used to assist eye irrigation.

EMERGENCY DEPARTMENT

- Laboratory analysis of complete blood count, serum electrolytes, BUN, creatinine, glucose, urinalysis, baseline for serum aminotransferases (ALT and AST), calcium, phosphorus and magnesium, may assist in establishing a treatment regime. Other useful analyses include anion and osmolar gaps, arterial blood gases (ABGs), chest radiographs and electrocardiograph
- Positive end-expiratory pressure (PEEP)-assisted ventilation may be required for acute parenchymal injury or adult respiratory distress syndrome.
- Consult a toxicologist as necessary.

BRONSTEIN, A.C. and CURRANCE, P.L. EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994

For acute and short term repeated exposures to methanol:

- · Toxicity results from accumulation of formaldehyde/formic acid.
- · Clinical signs are usually limited to CNS, eyes and GI tract Severe metabolic acidosis may produce dyspnea and profound systemic effects which may become intractable. All symptomatic patients should have arterial pH measured. Evaluate airway, breathing and circulation.
- Stabilise obtunded patients by giving naloxone, glucose and thiamine.
- Decontaminate with Ipecac or lavage for patients presenting 2 hours post-ingestion. Charcoal does not absorb well; the usefulness of cathartic is not established.
- Forced diuresis is not effective; haemodialysis is recommended where peak methanol levels exceed 50 mg/dL (this correlates with serum bicarbonate levels below 18 mEq/L).
- Ethanol, maintained at levels between 100 and 150 mg/dL, inhibits formation of toxic metabolites and may be indicated when peak methanol levels exceed 20 mg/dL. An intravenous solution of ethanol in D5W is optimal.
- · Folate, as leucovorin, may increase the oxidative removal of formic acid. 4-methylpyrazole may be an effective adjunct in the treatment. 8. Phenytoin may be preferable to diazepam for controlling seizure.

[Ellenhorn Barceloux: Medical Toxicology]

Methanol poisoning can be treated with fomepizole, or if unavailable, ethanol. Both drugs act to reduce the action of alcohol dehydrogenase on methanol by means of competitive inhibition. Ethanol, the active ingredient in alcoholic beverages, acts as a competitive inhibitor by more effectively binding and saturating the alcohol dehydrogenase enzyme in the liver, thus blocking the binding of methanol. Methanol is excreted by the kidneys without being converted into the very toxic metabolites formaldehyde and formic acid. Alcohol dehydrogenase instead enzymatically converts ethanol to acetaldehyde, a much less toxic organic molecule. Additional treatment may include sodium bicarbonate for metabolic acidosis, and hemodialysis or hemodiafiltration to remove methanol and formate from the blood. Folinic acid or folic acid is also administered to enhance the metabolism of formate.

BIOLOGICAL EXPOSURE INDEX - BEI Sampling Time

 1. Methanol in urine
 15 mg/l
 End of shift
 B, NS

 2. Formic acid in urine
 80 mg/gm creatinine
 Before the shift at end of workweek
 B, NS

B: Background levels occur in specimens collected from subjects **NOT** exposed. NS: Non-specific determinant - observed following exposure to other materials.

Index

SECTION 5 Firefighting measures

Determinant

Comment

Version No: **5.6** Page **4** of **16** Issue Date: **20/12/2022**

TensorGrip TC42 500ml Aerosol Spray Adhesive

Print Date: 20/12/2022

Extinguishing media

- Alcohol stable foam.
- Dry chemical powder.
- ▶ BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

SMALL FIRE:

▶ Water spray, dry chemical or CO2

LARGE FIRE:

Water spray or fog.

Special hazards arising from the substrate or mixture

Fire Incompatibility Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Advice for firefighters

Fire Fighting	
Fire/Explosion Hazard	carbon dioxide (CO2) , other pyrolysis products typical of burning organic material. Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions. BEWARE: Empty solvent, paint, lacquer and flammable liquid drums present a severe explosion hazard if cut by flame torch or welded. Even when thoroughly cleaned or reconditioned the drum seams may retain sufficient solvent to generate an explosive atmosphere in the drum. WARNING: Aerosol containers may present pressure related hazards.
HAZCHEM	Not Applicable

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills	 Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Wear protective clothing, impervious gloves and safety glasses. Shut off all possible sources of ignition and increase ventilation. Wipe up. If safe, damaged cans should be placed in a container outdoors, away from all ignition sources, until pressure has dissipated.
	► Undamaged cans should be gathered and stowed safely.
Major Spills	 Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water courses No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Water spray or fog may be used to disperse / absorb vapour. Absorb or cover spill with sand, earth, inert materials or vermiculite. If safe, damaged cans should be placed in a container outdoors, away from ignition sources, until pressure has dissipated. Undamaged cans should be gathered and stowed safely. Collect residues and seal in labelled drums for disposal.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Safe handling

Precautions for safe handling

The conductivity of this material may make it a static accumulator., A liquid is typically considered nonconductive if its conductivity is below 100 pS/m and is considered semi-conductive if its conductivity is below 10 000 pS/m., Whether a liquid is nonconductive or semi-conductive, the precautions are the same., A number of factors, for example liquid temperature, presence of contaminants, and anti-static additives can greatly influence the conductivity of a liquid.

Radon and its radioactive decay products are hazardous if inhaled or ingested

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- ▶ Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- Avoid smoking, naked lights or ignition sources.
- Avoid contact with incompatible materials.
- When handling, **DO NOT** eat, drink or smoke.
- **DO NOT** incinerate or puncture aerosol cans.
- ▶ DO NOT spray directly on humans, exposed food or food utensils.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- ▶ Use good occupational work practice.

Version No: **5.6** Page **5** of **16** Issue Date: **20/12/2022**

TensorGrip TC42 500ml Aerosol Spray Adhesive

Print Date: 20/12/2022

- Observe manufacturer's storage and handling recommendations contained within this SDS.
 - * Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Other information

Conditions for safe storage, including any incompatibilities

- For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure.
- For materials with a viscosity of at least 2680 cSt. (23 deg. C)
- ► For manufactured product having a viscosity of at least 250 cSt. (23 deg. C)
- Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging;

 (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used.
 - Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages
 - In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.
 - Aerosol dispenser.
 - ▶ Check that containers are clearly labelled

Methyl acetate:

- reacts violently with oxidisers
- decomposes on contact with acid or bases forming methanol
- is incompatible with nitrates
- attacks some plastics
- ► may generate electrostatic charges

Low molecular weight alkanes:

- ▶ May react violently with strong oxidisers, chlorine, chlorine dioxide, dioxygenyl tetrafluoroborate.
- May react with oxidising materials, nickel carbonyl in the presence of oxygen, heat.
- Are incompatible with nitronium tetrafluoroborate(1-), halogens and interhalogens
- ▶ may generate electrostatic charges, due to low conductivity, on flow or agitation.
- Avoid flame and ignition sources

Storage incompatibility

Redox reactions of alkanes, in particular with oxygen and the halogens, are possible as the carbon atoms are in a strongly reduced condition. Reaction with oxygen (if present in sufficient quantity to satisfy the reaction stoichiometry) leads to combustion without any smoke, producing carbon dioxide and water. Free radical halogenation reactions occur with halogens, leading to the production of haloalkanes. In addition, alkanes have been shown to interact with, and bind to, certain transition metal complexes

Interaction between chlorine and ethane over activated carbon at 350 deg C has caused explosions, but added carbon dioxide reduces the risk. The violent interaction of liquid chlorine injected into ethane at 80 deg C/10 bar becomes very violent if ethylene is also present A mixture prepared at -196 deg C with either methane or ethane exploded when the temp was raised to -78 deg C. Addition of nickel carbonyl to an n-butane-oxygen mixture causes an explosion at 20-40 deg C.

Alkanes will react with steam in the presence of a nickel catalyst to give hydrogen.

- ▶ Esters react with acids to liberate heat along with alcohols and acids
- Strong oxidising acids may cause a vigorous reaction with esters that is sufficiently exothermic to ignite the reaction products.
- $\mbox{\Large F}$ Heat is also generated by the interaction of esters with caustic solutions.
- Flammable hydrogen is generated by mixing esters with alkali metals and hydrides.
- ▶ Esters may be incompatible with aliphatic amines and nitrates.

Propane

- reacts violently with strong oxidisers, barium peroxide, chlorine dioxide, dichlorine oxide, fluorine etc.
- liquid attacks some plastics, rubber and coatings
- may accumulate static charges which may ignite its vapours

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

INOREDIENT DATA						
Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	methyl acetate	Methyl acetate	200 ppm / 606 mg/m3	757 mg/m3 / 250 ppm	Not Available	Not Available
Australia Exposure Standards	LPG (liquefied petroleum gas)	LPG (liquified petroleum gas)	1000 ppm / 1800 mg/m3	Not Available	Not Available	Not Available

Emergency Limits

Ingredient	TEEL-1	TEEL-2	TEEL-3
methyl acetate	250 ppm	1,700 ppm	10000* ppm
naphtha petroleum, light, hydrotreated	1,000 mg/m3	11,000 mg/m3	66,000 mg/m3
LPG (liquefied petroleum gas)	65,000 ppm	2.30E+05 ppm	4.00E+05 ppm

Ingredient	Original IDLH	Revised IDLH
methyl acetate	3,100 ppm	Not Available
naphtha petroleum, light, hydrotreated	Not Available	Not Available
LPG (liquefied petroleum gas)	2.000 ppm	Not Available

Occupational Exposure Banding

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit

Notes:

Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.

Version No: 5.6 Issue Date: 20/12/2022 Page 6 of 16 Print Date: 20/12/2022

TensorGrip TC42 500ml Aerosol Spray Adhesive

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit
naphtha petroleum, light, hydrotreated	E	≤ 0.1 ppm
Notes:	Occupational exposure banding is a process of assigning chemicals into s adverse health outcomes associated with exposure. The output of this pro range of exposure concentrations that are expected to protect worker hea	ocess is an occupational exposure band (OEB), which corresponds to a

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

General exhaust is adequate under normal conditions. If risk of overexposure exists, wear SAA approved respirator. Correct fit is essential to obtain adequate protection.

Provide adequate ventilation in warehouse or closed storage areas.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

Type of Contaminant: Speed: aerosols, (released at low velocity into zone of active generation) 0.5-1 m/s direct spray, spray painting in shallow booths, gas discharge (active generation into zone of rapid air motion) 1-2.5 m/s (200-500 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used

Personal protection

Eye and face protection

- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

For esters

- Do NOT use natural rubber, butyl rubber, EPDM or polystyrene-containing materials.
- No special equipment needed when handling small quantities.
- ► OTHERWISE:
- For potentially moderate exposures:
- Wear general protective gloves, eg. light weight rubber gloves. ► For potentially heavy exposures:
- ▶ Wear chemical protective gloves, eg. PVC. and safety footwear.
- Insulated gloves:

NOTE: Insulated gloves should be loose fitting so that may be removed quickly if liquid is spilled upon them. Insulated gloves are not made to permit hands to be placed in the liquid; they provide only short-term protection from accidental contact with the liquid.

Body protection

Hands/feet protection

See Other protection below No special equipment needed when handling small quantities.

Other protection

OTHERWISE: Overalls.

- Skin cleansing cream. Eyewash unit.
- Do not spray on hot surfaces.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index"

The effect(s) of the following substance(s) are taken into account in the *computer*-

Respiratory protection

Type AX Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required.

Version No: **5.6** Page **7** of **16** Issue Date: **20/12/2022**

TensorGrip TC42 500ml Aerosol Spray Adhesive

Print Date: 20/12/2022

generated selection:

TensorGrip TC42 500ml Aerosol Spray Adhesive

Material	СРІ
BUTYL	A
PE/EVAL/PE	A
PVA	С

- * CPI Chemwatch Performance Index
- A: Best Selection
- B: Satisfactory; may degrade after 4 hours continuous immersion
- C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 5 x ES	AX-AUS / Class 1	-	AX-PAPR-AUS / Class 1
up to 25 x ES	Air-line*	AX-2	AX-PAPR-2
up to 50 x ES	-	AX-3	-
50+ x ES	-	Air-line**	-

* - Continuous-flow; ** - Continuous-flow or positive pressure demand ^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used
- Generally not applicable.

Aerosols, in common with most vapours/ mists, should never be used in confined spaces without adequate ventilation. Aerosols, containing agents designed to enhance or mask smell, have triggered allergic reactions in predisposed individuals.

Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important.

Required minimum protection factor	Maximum gas/vapour concentration present in air p.p.m. (by volume)	Half-face Respirator	Full-Face Respirator
up to 10	1000	AX-AUS / Class 1	-
up to 50	1000	-	AX-AUS / Class 1
up to 50	5000	Airline *	-
up to 100	5000	-	AX-2
up to 100	10000	-	AX-3
100+		-	Airline**

** - Continuous-flow or positive pressure demand.

A(All classes) = Organic vapours, B AUS or B1 = Acid gases, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 deg C)

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

illorillation on basic physical a	and onemical properties		
Appearance	Not Available		
Physical state	Liquified Gas	Relative density (Water = 1)	0.795
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	495
pH (as supplied)	Not Available	Decomposition temperature (°C)	Not Available
Melting point / freezing point (°C)	-97	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	-40	Molecular weight (g/mol)	Not Available
Flash point (°C)	-104	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	HIGHLY FLAMMABLE.	Oxidising properties	Not Available
Upper Explosive Limit (%)	9.1	Surface Tension (dyn/cm or mN/m)	Not Available

Version No: **5.6** Page **8** of **16** Issue Date: **20/12/2022**

TensorGrip TC42 500ml Aerosol Spray Adhesive

Print Date: 20/12/2022

Lower Explosive Limit (%)	2.2	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	46.86	Gas group	Not Available
Solubility in water	Immiscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	2.93	VOC g/L	539.06

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	Elevated temperatures. Presence of open flame. Product is considered stable. Hazardous polymerisation will not occur. Presence of heat source Presence of an ignition source
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Information on toxicological effect

The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage. Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by sleepiness, reduced alertness, loss of reflexes, lack of co-ordination, and vertigo.

The main effects of simple esters are irritation, stupor and insensibility. Headache, drowsiness, dizziness, coma and behavioural changes may occur.

Exposure to methyl acetate fumes may lead to shortness of breath and an irregular heartbeat. Inhalation of methyl acetate causes severe headache and sleepiness.

The vapour is discomforting

Inhaled

WARNING:Intentional misuse by concentrating/inhaling contents may be lethal.

Nerve damage can be caused by some non-ring hydrocarbons. Symptoms are temporary, and include weakness, tremors, increased saliva, some convulsions, excessive tears with discolouration and inco-ordination lasting up to 24 hours.

Inhalation of high concentrations of gas/vapour causes lung irritation with coughing and nausea, central nervous depression with headache and dizziness, slowing of reflexes, fatigue and inco-ordination.

Material is highly volatile and may quickly form a concentrated atmosphere in confined or unventilated areas. The vapour may displace and replace air in breathing zone, acting as a simple asphyxiant. This may happen with little warning of overexposure.

The use of a quantity of material in an unventilated or confined space may result in increased exposure and an irritating atmosphere developing. Before starting consider control of exposure by mechanical ventilation.

Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual.

Ingestion

Swallowing of the liquid may cause aspiration into the lungs with the risk of chemical pneumonitis; serious consequences may result. (ICSC13733)

Methanol may produce a burning or painful sensation in the mouth, throat, chest, and stomach. This may be accompanied by nausea, vomiting, headache, dizziness, shortness of breath, weakness, fatigue, leg cramps, restlessness, confusion, drunken behaviour, visual disturbance, drowsiness, coma and death.

Swallowing large doses of methyl acetate may result in severe cramping, intoxication and depression of the central nervous system.

The material has NOT been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of

corroborating animal or human evidence.

Isoparaffinic hydrocarbons cause temporary lethargy, weakness, inco-ordination and diarrhoea

Not normally a hazard due to physical form of product

Considered an unlikely route of entry in commercial/industrial environments

Considered an unlikely route of entry in commercial/industrial environments. The liquid may produce gastrointestinal discomfort and may be harmful if swallowed.

Accidental ingestion of the material may be damaging to the health of the individual.

The material may accentuate any pre-existing dermatitis condition

Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions.

Skin exposure to isoparaffins may produce slight to moderate irritation in animals and humans. Rare sensitisation reactions in humans have

occurred.

Methyl acetate has proven to cause only weak skin irritation in humans and in rabbits (no oedema, erythema with maximum grade 1 reversible

Skin Contact within 48 hours).

Spray mist may produce discomfort

Open cuts, abraded or irritated skin should not be exposed to this material

Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

There is some evidence to suggest that the material may cause moderate inflammation of the skin either following direct contact or after a delay of some time. Repeated exposure can cause contact dermatitis which is characterised by redness, swelling and blistering.

Instillation of isoparaffins into rabbit eyes produces only slight irritation.

Eye

Overexposure to methyl acetate vapour may result in a condition known as amylopia (dimming of vision) due to withering of the optic nerve. Methyl acetate may resemble methanol in this respect. Animal testing showed that methyl acetate causes severe eye irritation, but this is reversible after exposure ends.

This material may produce eye irritation in some persons and produce eye damage 24 hours or more after instillation. Moderate inflammation may be expected with redness; conjunctivitis may occur with prolonged exposure.

Version No: 5.6 Page 9 of 16 Issue Date: 20/12/2022

TensorGrip TC42 500ml Aerosol Spray Adhesive

Print Date: 20/12/2022

Chronic

Long-term exposure to respiratory irritants may result in airways disease, involving difficulty breathing and related whole-body problems. Toxic: danger of serious damage to health by prolonged exposure through inhalation, in contact with skin and if swallowed.

This material can cause serious damage if one is exposed to it for long periods. It can be assumed that it contains a substance which can produce severe defects.

Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure. Constant or exposure over long periods to mixed hydrocarbons may produce stupor with dizziness, weakness and visual disturbance, weight loss and anaemia, and reduced liver and kidney function. Skin exposure may result in drying and cracking and redness of the skin.

Chronic effects of exposure to methyl acetate may be similar to those of methanol exposure, because methyl acetate can break down in water to form methanol and acetic acid. The main hazard is damage to the optic nerve. Long-term exposure to methanol vapour, at concentrations exceeding 3000 ppm, may produce cumulative effects characterised by

gastrointestinal disturbances (nausea, vomiting), headache, ringing in the ears, insomnia, trembling, unsteady gait, vertigo, conjunctivitis and clouded or double vision. Liver and/or kidney injury may also result.

Prolonged or repeated skin contact may cause drying with cracking, irritation and possible dermatitis following.

TensorGrip TC42 500ml	TOXICITY	IRRITATION
Aerosol Spray Adhesive	Not Available	Not Available
	TOXICITY	IRRITATION
	dermal (rat) LD50: >2000 mg/kg ^[2]	Eye (rabbit):100 mg/24h-moderate
methyl acetate	Oral (Rabbit) LD50; 3700 mg/kg ^[2]	Skin (rabbit): 20 mg/24h - mild
		Skin (rabbit): 500 mg/24h - mild
	TOXICITY	IRRITATION
naphtha petroleum, light,	Dermal (rabbit) LD50: >1900 mg/kg ^[1]	Eye: no adverse effect observed (not irritating) ^[1]
hydrotreated	Inhalation(Rat) LC50: >4.42 mg/L4h ^[1]	Skin: adverse effect observed (irritating) ^[1]
	Oral (Rat) LD50; >2000 mg/kg ^[1]	
LPG (liquefied petroleum gas)	TOXICITY	IRRITATION
	Inhalation(Rat) LC50: 658 mg/l4h ^[2]	Not Available
Legend:	Value obtained from Europe ECHA Registered Substait specified data extracted from RTECS - Register of Toxic I	nces - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise

TensorGrip TC42 500ml Aerosol Spray Adhesive

Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production.

Generally, linear and branched-chain alkyl esters are hydrolysed to their component alcohols and carboxylic acids in the intestinal tract, blood and most tissues throughout the body. Following hydrolysis the component alcohols and carboxylic acids are metabolized Oral acute toxicity studies have been reported for 51 of the 67 esters of aliphatic acyclic primary alcohols and aliphatic linear saturated carboxylic acids. The very low oral acute toxicity of this group of esters is demonstrated by oral LD50 values greater than 1850 mg/kg bw

Genotoxicity studies have been performed in vitro using the following esters of aliphatic acyclic primary alcohols and aliphatic linear saturated carboxylic acids: methyl acetate, butyl acetate, butyl stearate and the structurally related isoamyl formate and demonstrates that these substances are not genotoxic.

The JEFCA Committee concluded that the substances in this group would not present safety concerns at the current levels of intake the esters of aliphatic acyclic primary alcohols and aliphatic linear saturated carboxylic acids are generally used as flavouring substances up to average maximum levels of 200 mg/kg. Higher levels of use (up to 3000 mg/kg) are permitted in food categories such as chewing gum and hard candy. In Europe the upper use levels for these flavouring substances are generally 1 to 30 mg/kg foods and in special food categories like candy and alcoholic beverages up to 300 mg/kg foods

InternationI Program on Chemical Safety: the Joint FAO/WHO Expert Committee on Food Additives (JECFA) Esters of Aliphatic acyclic primary alcohols with aliphatic linear saturated carboxylic acids.; 1998

METHYL ACETATE

NAPHTHA PETROLEUM,

LIGHT, HYDROTREATED

The material may produce moderate eve irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis

The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.

For Low Boiling Point Naphthas (LBPNs):

LBPNs generally have low acute toxicity by the oral (median lethal dose [LD50] in rats > 2000 mg/kg-bw), inhalation (LD50 in rats > 5000 mg/m3) and dermal (LD50 in rabbits > 2000 mg/kg-bw) routes of exposure

Most LBPNs are mild to moderate eye and skin irritants in rabbits, with the exception of heavy catalytic cracked and heavy catalytic reformed naphthas, which have higher primary skin irritation indices

Sensitisation:

LBPNs do not appear to be skin sensitizers, but a poor response in the positive control was also noted in these studies Repeat dose toxicity:

The lowest-observed-adverse-effect concentration (LOAEC) and lowest-observed-adverse-effect level (LOAEL) values identified following short-term (2-89 days) and subchronic (greater than 90 days) exposure to the LBPN substances. These values were determined for a variety of endpoints after considering the toxicity data for all LBPNs in the group. Most of the studies were carried out by the inhalation route of exposure. Renal effects, including increased kidney weight, renal lesions (renal tubule dilation, necrosis) and hyaline droplet formation, observed in male rats exposed orally or by inhalation to most LBPNs, were considered species- and sex-specific These effects were determined to be due to a mechanism of action not relevant to humans -specifically, the interaction between hydrocarbon metabolites and alpha-2-microglobulin, an enzyme not produced in substantial amounts in female rats, mice and other species, including humans. The resulting nephrotoxicity and subsequent carcinogenesis in male rats were therefore not considered in deriving LOAEC/LOAEL values.

Only a limited number of studies of short-term and subchronic duration were identified for site-restricted LBPNs. The lowest LOAEC identified in these studies, via the inhalation route, is 5475 mg/m3, based on a concentration-related increase in liver weight in both male and female rats

Version No: **5.6** Page **10** of **16** Issue Date: **20/12/2022**

TensorGrip TC42 500ml Aerosol Spray Adhesive

Print Date: 20/12/2022

following a 13-week exposure to light catalytic cracked naphtha. Shorter exposures of rats to this test substance resulted in nasal irritation at 9041 mg/m3

No systemic toxicity was reported following dermal exposure to light catalytic cracked naphtha, but skin irritation and accompanying histopathological changes were increased, in a dose-dependent manner, at doses as low as 30 mg/kg-bw per day when applied 5 days per week for 90 days in rats

No non-cancer chronic toxicity studies (= 1 year) were identified for site-restricted LBPNs and very few non-cancer chronic toxicity studies were identified for other LBPNs. An LOAEC of 200 mg/m3 was noted in a chronic inhalation study that exposed mice and rats to unleaded gasoline (containing 2% benzene). This inhalation LOAEC was based on ocular discharge and ocular irritation in rats. At the higher concentration of 6170 mg/m3, increased kidney weight was observed in male and female rats (increased kidney weight was also observed in males only at 870 mg/m3). Furthermore, decreased body weight in male and female mice was also observed at 6170 mg/m3

A LOAEL of 714 mg/kg-bw was identified for dermal exposure based on local skin effects (inflammatory and degenerative skin changes) in mice following application of naphtha for 105 weeks. No systemic toxicity was reported.

Genotoxicity:

Although few genotoxicity studies were identified for the site-restricted LBPNs, the genotoxicity of several other LBPN substances has been evaluated using a variety of in vivo and in vitro assays. While in vivo genotoxicity assays were negative overall, the in vitro tests exhibited mixed results.

For in vivo genotoxicity tests, LBPNs exhibited negative results for chromosomal aberrations and micronuclei induction, but exhibited positive results in one sister chromatid exchange assay although this result was not considered definitive for clastogenic activity as no genetic material was unbalanced or lost. Mixtures that were tested, which included a number of light naphthas, displayed mixed results (i.e., both positive and negative for the same assay) for chromosomal aberrations and negative results for the dominant lethal mutation assay. Unleaded gasoline (containing 2% benzene) was tested for its ability to induce unscheduled deoxyribonucleic acid (DNA) synthesis (UDS) and replicative DNA synthesis (RDS) in rodent hepatocytes and kidney cells. UDS and RDS were induced in mouse hepatocytes via oral exposure and RDS was induced in rat kidney cells via oral and inhalation exposure. Unleaded gasoline (benzene content not stated) exhibited negative results for chromosomal aberrations and the dominant lethal mutation assay and mixed results for atypical cell foci in rodent renal and hepatic cells. For in vitro genotoxicity studies, LBPNs were negative for six out of seven Ames tests, and were also negative for UDS and for forward mutations LBPNs exhibited mixed or equivocal results for the mouse lymphoma and sister chromatid exchange assays, as well as for cell transformation and positive results for one bacterial DNA repair assay. Mixtures that were tested, which included a number of light naphthas, displayed negative results for the Ames test battery, the sister chromatid exchange assay and for one mutagenicity assay. Mixed results were observed for UDS and the mouse lymphoma assays.

While the majority of in vivo genotoxicity results for LBPN substances are negative, the potential for genotoxicity of LBPNs as a group cannot be discounted based on the mixed in vitro genotoxicity results.

Carcinogenicity:

Although a number of epidemiological studies have reported increases in the incidence of a variety of cancers, the majority of these studies are considered to contain incomplete or inadequate information. Limited data, however, are available for skin cancer and leukemia incidence, as well as mortality among petroleum refinery workers. It was concluded that there is limited evidence supporting the view that working in petroleum refineries entails a carcinogenic risk (Group 2A carcinogen). IARC (1989a) also classified gasoline as a Group 2B carcinogen; it considered the evidence for carcinogenicity in humans from gasoline to be inadequate and noted that published epidemiological studies had several limitations, including a lack of exposure data and the fact that it was not possible to separate the effects of combustion products from those of gasoline itself. Similar conclusions were drawn from other reviews of epidemiological studies for gasoline (US EPA 1987a, 1987b). Thus, the evidence gathered from these epidemiological studies is considered to be inadequate to conclude on the effect

No inhalation studies assessing the carcinogenicity of the site-restricted LBPNs were identified. Only unleaded gasoline has been examined for its carcinogenic potential, in several inhalation studies. In one study, rats and mice were exposed to 0, 200, 870 or 6170 mg/m3 of a 2% benzene formulation of the test substance, via inhalation, for approximately 2 years. A statistically significant increase in hepatocellular adenomas and carcinomas, as well as a non-statistical increase in renal tumours, were observed at the highest dose in female mice. A dose-dependent increase in the incidence of primary renal neoplasms was also detected in male rats, but this was not considered to be relevant to humans, as discussed previously. Carcinogenicity was also assessed for unleaded gasoline, via inhalation, as part of initiation/promotion studies. In these studies, unleaded gasoline did not appear to initiate tumour formation, but did show renal cell and hepatic tumour promotion ability, when rats and mice were exposed, via inhalation, for durations ranging from 13 weeks to approximately 1 year using an initiation/promotion protocol However, further examination of data relevant to the composition of unleaded gasoline demonstrated that this is a highly-regulated substance; it is expected to contain a lower percentage of benzene and has a discrete component profile when compared to other substances in the LBPN group.

Both the European Commission and the International Agency for Research on Cancer (IARC) have classified LBPN substances as carcinogenic. All of these substances were classified by the European Commission (2008) as Category 2 (R45: may cause cancer) (benzene content = 0.1% by weight). IARC has classified gasoline, an LBPN, as a Group 2B carcinogen (possibly carcinogenic to humans) and "occupational exposures in petroleum refining" as Group 2A carcinogens (probably carcinogenic to humans).

Several studies were conducted on experimental animals to investigate the dermal carcinogenicity of LBPNs. The majority of these studies were conducted through exposure of mice to doses ranging from 694-1351 mg/kg-bw, for durations ranging from 1 year to the animals lifetime or until a tumour persisted for 2 weeks. Given the route of exposure, the studies specifically examined the formation of skin tumours. Results for carcinogenicity via dermal exposure are mixed. Both malignant and benign skin tumours were induced with heavy catalytic cracked naphtha, light catalytic cracked naphtha, light

straight-run naphtha and naphtha Significant increases in squamous cell carcinomas were also observed when mice were dermally treated with Stoddard solvent, but the latter was administered as a mixture (90% test substance), and the details of the study were not available. In contrast, insignificant increases in tumour formation or no tumours were observed when light alkylate naphtha, heavy catalytic reformed naphtha, sweetened naphtha, light catalytically cracked naphtha

or unleaded gasoline was dermally applied to mice. Negative results for skin tumours were also observed in male mice dermally exposed to sweetened naphtha using an initiation/promotion protocol.

Reproductive/ Developmental toxicity:

No reproductive or developmental toxicity was observed for the majority of LBPN substances evaluated. Most of these studies were carried out by inhalation exposure in rodents.

NOAEC values for reproductive toxicity following inhalation exposure ranged from 1701 mg/m3 (CAS RN 8052-41-3) to 27 687 mg/m3 (CAS RN 64741-63-5) for the LBPNs group evaluated, and from 7690 mg/m3 to 27 059 mg/m3 for the site-restricted light catalytic cracked and full-range catalytic reformed naphthas. However, a decreased number of pups per litter and higher frequency of post-implantation loss were observed following inhalation exposure of female rats to hydrotreated heavy naphtha (CAS RN 64742-48-9) at a concentration of 4679 mg/m3, 6 hours per day, from gestational days 7-20. For dermal exposures, NOAEL values of 714 mg/kg-bw (CAS RN 8030-30-6) and 1000 mg/kg-bw per day (CAS RN 68513-02-0) were noted. For oral exposures, no adverse effects on reproductive parameters were reported when rats were given site-restricted light catalytic cracked naphtha at 2000 mg/kg on gestational day 13.

For most LBPNs, no treatment-related developmental effects were observed by the different routes of exposure However, developmental toxicity was observed for a few naphthas. Decreased foetal body weight and an increased incidence of ossification variations were observed when rat dams were exposed to light aromatized solvent naphtha, by gavage, at 1250 mg/kg-bw per day. In addition, pregnant rats exposed by inhalation to hydrotreated heavy naphtha at 4679 mg/m3 delivered pups with higher birth weights. Cognitive and memory impairments were also observed in the offspring.

Low Boiling Point Naphthas [Site-Restricted]

The High Benzene Naphthas (HBNs) contain mainly benzene but its adverse health effect is more with other components, which may cause adverse health effects involving a variety of organs. They may produce genetic damage as well as effects on reproduction and the unborn baby (generally at levels toxic to the mother). They may also cause cancers.

For petroleum: This product contains benzene, which can cause acute myeloid leukaemia, and n-hexane, which can be metabolized to compounds which are toxic to the nervous system. This product contains toluene, and animal studies suggest high concentrations of toluene lead to hearing loss. This product contains ethyl benzene and naphthalene, from which animal testing shows evidence of tumour formation.

Version No: 5.6 Issue Date: 20/12/2022 Page 11 of 16

TensorGrip TC42 500ml Aerosol Spray Adhesive

Print Date: 20/12/2022

Cancer-causing potential: Animal testing shows inhaling petroleum causes tumours of the liver and kidney; these are however not considered to be relevant in humans

Mutation-causing potential: Most studies involving gasoline have returned negative results regarding the potential to cause mutations, including all recent studies in living human subjects (such as in petrol service station attendants).

Reproductive toxicity: Animal studies show that high concentrations of toluene (>0.1%) can cause developmental effects such as lower birth weight and developmental toxicity to the nervous system of the foetus. Other studies show no adverse effects on the foetus.

Human effects: Prolonged or repeated contact may cause defatting of the skin which can lead to skin inflammation and may make the skin more susceptible to irritation and penetration by other materials.

Animal testing shows that exposure to gasoline over a lifetime can cause kidney cancer, but the relevance in humans is questionable

DHC Solvent Chemie (for EC No.: 926-605-8)

LPG (LIQUEFIED PETROLEUM GAS)

No significant acute toxicological data identified in literature search. inhalation of the gas

TensorGrip TC42 500ml Aerosol Spray Adhesive & NAPHTHA PETROLEUM, LIGHT, HYDROTREATED

Animal studies indicate that normal, branched and cyclic paraffins are absorbed from the gastrointestinal tract and that the absorption of n-paraffins is inversely proportional to the carbon chain length, with little absorption above C30. With respect to the carbon chain lengths likely to be present in mineral oil, n-paraffins may be absorbed to a greater extent than iso- or cyclo-paraffins.

The major classes of hydrocarbons are well absorbed into the gastrointestinal tract in various species. In many cases, the hydrophobic hydrocarbons are ingested in association with fats in the diet. Some hydrocarbons may appear unchanged as in the lipoprotein particles in the gut lymph, but most hydrocarbons partly separate from fats and undergo metabolism in the gut cell. The gut cell may play a major role in determining the proportion of hydrocarbon that becomes available to be deposited unchanged in peripheral tissues such as in the body fat stores or the liver.

For methyl acetate:

Acute toxicity: Methyl acetate is a water-soluble substance with high volatility. In animal testing, the substance has narcotic properties at high concentration; this is soon reversible after exposure ends.

TensorGrip TC42 500ml Aerosol Spray Adhesive & METHYL ACETATE

Methyl acetate is absorbed via the lungs. After absorption, it is broken down to methanol and acetic acid. The main breakdown product is

methanol, which is itself metabolized to formic acid. Methanol is highly toxic, so methyl acetate is of concern for acute toxicity. In humans, accidental inhalation of vapours of methyl acetate caused severe headache and considerable sleepiness. Methyl acetate has proven to cause only weak skin irritation in humans. Eye irritation, however, was severe, but in animal testing was reversible after 7 days. Exposure to methyl acetate vapours causes irritation to the eves and airways.

Sensitisation: Methyl acetate is not expected to sensitise the skin.

Repeat dose toxicity: Adequate data does not exist for repeated or prolonged exposure in humans. Methyl acetate may cause dryness and cracking of the skin.

Mutation-causing potential: In testing involving bacterial and animal cells, methyl acetate had negative results. Furthermore, the breakdown products, methanol and acetic acid, show no evidence for causing mutations. Methyl acetate should not be classified as causing mutations. Reproductive toxicity: There is no data on the reproductive toxicity of methyl acetate. Methanol, one of the breakdown products, showed some toxicity to the foetus and potential for birth defects, but at high concentrations only, which were toxic to the mother.

Acute Toxicity	×	Carcinogenicity	×
Skin Irritation/Corrosion	✓	Reproductivity	×
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	✓
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	✓

Leaend:

X - Data either not available or does not fill the criteria for classification

Data available to make classification

SECTION 12 Ecological information

	Endpoint	Test Duration (hr)	Species	Value	Source
TensorGrip TC42 500ml Aerosol Spray Adhesive	Not Available	Not Available	Not Available	Not Available	Not Available
	Endpoint	Test Duration (hr)	Species	Value	Source
	NOEC(ECx)	72h	Algae or other aquatic plants	>=120mg/l	1
methyl acetate	EC50	72h	Algae or other aquatic plants	>120mg/l	1
	EC50	48h	Crustacea	1026.7mg/l	1
	LC50	96h	Fish	250mg/l	1
	Endpoint	Test Duration (hr)	Species	Value	Source
	NOEC(ECx)	504h	Crustacea	0.17mg/l	2
naphtha petroleum, light, hydrotreated	EC50	48h	Crustacea	0.64mg/l	2
nyurotreateu	LC50	96h	Fish	4.26mg/l	2
	EC50	96h	Algae or other aquatic plants	64mg/l	2
	Endpoint	Test Duration (hr)	Species	Value	Source
	EC50(ECx)	96h	Algae or other aquatic plants	7.71mg/l	2
LPG (liquefied petroleum gas)	LC50	96h	Fish	24.11mg/l	2
	EC50	96h	Algae or other aquatic plants	7.71mg/l	2

Bioconcentration Data 8. Vendor Data

Version No: **5.6** Page **12** of **16** Issue Date: **20/12/2022**

TensorGrip TC42 500ml Aerosol Spray Adhesive

Print Date: 20/12/2022

When released in the environment, alkanes don't undergo rapid biodegradation, because they have no functional groups (like hydroxyl or carbonyl) that are needed by most organisms in order to metabolize the compound.

However, some bacteria can metabolise some alkanes (especially those linear and short), by oxidizing the terminal carbon atom. The product is an alcohol, that could be next oxidised to an aldehyde, and finally to a carboxylic acid. The resulting fatty acid could be metabolised through the fatty acid degradation pathway.

For petroleum distillates:

Environmental fate:

When petroleum substances are released into the environment, four major fate processes will take place: dissolution in water, volatilization, biodegradation and adsorption. These processes will cause changes in the composition of these UVCB substances. In the case of spills on land or water surfaces, photodegradation-another fate process-can also be significant.

As noted previously, the solubility and vapour pressure of components within a mixture will differ from those of the component alone. These interactions are complex for complex UVCBs such as petroleum hydrocarbons.

Each of the fate processes affects hydrocarbon families differently. Aromatics tend to be more water-soluble than aliphatics of the same carbon number, whereas aliphatics tend to be more volatile. Thus, when a petroleum mixture is released into the environment, the principal water contaminants are likely to be aromatics, whereas aliphatics will be the principal air contaminants. The trend in volatility by component class is as follows: alkenes = alkanes > aromatics = cycloalkanes.

The most soluble and volatile components have the lowest molecular weight; thus there is a general shift to higher molecular weight components in residual materials Biodegradation:

Biodegradation is almost always operative when petroleum mixtures are released into the environment. It has been widely demonstrated that nearly all soils and sediments have populations of bacteria and other organisms capable of degrading petroleum hydrocarbons Degradation occurs both in the presence and absence of oxygen. Two key factors that determine degradation rates are oxygen supply and molecular structure. In general, degradation is more rapid under aerobic conditions. Decreasing trends in degradation rates according to structure are as follows:

- (1) n-alkanes, especially in the C10-C25 range, which are degraded readily;
- (2) isoalkanes:
- (3) alkenes;
- (4) benzene, toluene, ethylbenzene, xylenes (BTEX) (when present in concentrations that are not toxic to microorganisms);
- (5) monoaromatics:
- (6) polynuclear (polycyclic) aromatic hydrocarbons (PAHs); and
- (7) higher molecular weight cycloalkanes (which may degrade very slowly.

Three weathering processes-dissolution in water, volatilization and biodegradation-typically result in the depletion of the more readily soluble, volatile and degradable compounds and the accumulation of those most resistant to these processes in residues.

When large quantities of a hydrocarbon mixture enter the soil compartment, soil organic matter and other sorption sites in soil are fully saturated and the hydrocarbons will begin to form a separate phase (a non-aqueous phase liquid, or NAPL) in the soil. At concentrations below the retention capacity for the hydrocarbon in the soil, the NAPL will be immobile this is referred to as residual NAPL. Above the retention capacity, the NAPL becomes mobile and will move within the soil Bioaccumulation:

Bioaccumulation potential was characterized based on empirical and/or modelled data for a suite of petroleum hydrocarbons expected to occur in petroleum substances. Bioaccumulation factors (BAFs) are the preferred metric for assessing the bioaccumulation potential of substances, as the bioconcentration factor (BCF) may not adequately account for the bioaccumulation potential of substances via the diet, which predominates for substances with log Kow > ~4.5

In addition to fish BCF and BAF data, bioaccumulation data for aquatic invertebrate species were also considered. Biota-sediment/soil accumulation factors (BSAFs), trophic magnification factors and biomagnification factors were also considered in characterizing bioaccumulation potential.

Overall, there is consistent empirical and predicted evidence to suggest that the following components have the potential for high bioaccumulation, with BAF/BCF values greater than 5000: C13–C15 isoalkanes, C12 alkenes, C12–C15 one-ring cycloalkanes, C12 and C15 two-ring cycloalkanes, C14 polycycloalkanes, C15 one-ring aromatics, C15 and C20 cycloalkane monoaromatics, C12–C13 diaromatics, C20 cycloalkane diaromatics, and C14 and C20 three-ring PAHs

These components are associated with a slow rate of metabolism and are highly lipophilic. Exposures from water and diet, when combined, suggest that the rate of uptake would exceed that of the total elimination rate. Most of these components are not expected to biomagnify in aquatic or terrestrial foodwebs, largely because a combination of metabolism, low dietary assimilation efficiency and growth dilution allows the elimination rate to exceed the uptake rate from the diet; however,

one study suggests that some alkyl-PAHs may biomagnify. While only BSAFs were found for some PAHs, it is possible that BSAFs will be > 1 for invertebrates, given that they do not have the same metabolic competency as fish.

In general, fish can efficiently metabolize aromatic compounds. There is some evidence that alkylation increases bioaccumulation of naphthalene but it is not known if this can be generalized to larger PAHs or if any potential increase in bioaccumulation due to alkylation will be sufficient to exceed a BAF/BCF of 5000.

Some lower trophic level organisms (i.e., invertebrates) appear to lack the capacity to efficiently metabolize aromatic compounds, resulting in high bioaccumulation potential for some aromatic components as compared to fish.

This is the case for the C14 three-ring PAH, which was bioconcentrated to a high level (BCF > 5000) by invertebrates but not by fish. There is potential for such bioaccumulative components to reach toxic levels in organisms if exposure is continuous and of sufficient magnitude, though this is unlikely in the water column following a spill scenario due to relatively rapid dispersal

Bioaccumulation of aromatic compounds might be lower in natural environments than what is observed in the laboratory. PAHs may sorb to organic material suspended in the water column (dissolved humic material), which decreases their overall bioavailability primarily due to an increase in size. This has been observed with fish

Diesel fuel studies in salt water are available. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/L.

The tropical mysid Metamysidopsis insularis was shown to be very sensitive to diesel fuel, with a 96-hour LC50 value of 0.22 mg/L this species has been shown to be as sensitive as temperate mysids to toxicants. However, However this study used nominal concentrations, and therefore was not considered acceptable. In another study involving diesel fuel, the effect on brown or common shrimp (Crangon crangon) a 96-hour LC50 of 22 mg/L was determined. A "gas oil" was also tested and a 96-hour LC50 of 12 mg/L. was determined The steady state cell density of marine phytoplankton decreased with increasing concentrations of diesel fuel, with different sensitivities between species. The diatom Phaeodactylum tricornutum showed a 20% decrease in cell density in 24 hours following a 3 mg/L exposure with a 24-hour no-observed effect concentration (NOEC) of 2.5 mg/L. The microalga Isochrysis galbana was more tolerant to diesel fuel, with a 24-hour lowest-observed-effect concentration (LOEC) of 26 mg/L (14% decrease in cell density), and a NOEC of 25 mg/L. Finally, the green algae Chlorella salina was relatively insensitive to diesel fuel contamination, with a 24-hour LOEC of 170 mg/L (27% decrease in cell density), and a NOEC of 160 mg/L. All populations of phytoplankton returned to a steady state within 5 days of exposure

In sandy soils, earthworm (Eisenia fetida) mortality only occurred at diesel fuel concentrations greater than 10 000 mg/kg, which was also the concentration at which sub-lethal weight loss was recorded

Nephrotoxic effects of diesel fuel have been documented in several animal and human studies. Some species of birds (mallard ducks in particular) are generally resistant to the toxic effects of petrochemical ingestion, and large amounts of petrochemicals are needed in order to cause direct mortality

for methyl actetate:

Environmental fate:

Biodegradation

The substance can be classified as "readily biodegradable" on the basis of an available study according to OECD-guideline 301 D. This closed bottle test indicates 74% biodegradation after 14 days, 75% after 19 days and 70% after 28 days. There is no information on possible intermediates before ultimate degradation of methyl acetate. Probably methanol and acetic acid could be intermediates of the biodegradation. The degradation of the possible intermediates is included in the results of the biodegradation test. Photodegradation

Direct photolysis of methyl acetate in the atmosphere is not to be expected. However, in the atmosphere gaseous methyl acetate reacts with hydroxyl radicals which have been formed photochemically. On the basis of an atmospheric concentration of the OH-radicals amounting to 5.10exp5 OH/cm3 and the rate constant (kdeg(air)) of 0.3182.10exp-12cm3.molecule-1.s-1, a half-life of 50.4 days is calculated for the photochemical degradation in the atmosphere. A half-life of 94 days was determined on the basis of laboratory investigations into photochemical degradation.

Hydrolysis

The hydrolysis of methyl acetate was examined in an older investigation from 1935. In this, a hydrolysis half-life of approximately 53 days at a temperature of 23.2 to 25.4 deg C was determined for methyl acetate (148.6 g/l). No information was provided on the pH value of the solution.

Hydrolysis half-lives of between approximately 63 days (pH = 8) and approximately 627 days (pH = 7) were calculated for the substance using QSAR calculations. Hydrolysis should

Version No: 5.6 Page 13 of 16 Issue Date: 20/12/2022

TensorGrip TC42 500ml Aerosol Spray Adhesive

Print Date: 20/12/2022

therefore not represent a significant elimination process for methyl acetate in the environment.

Distribution

On account of the vapour pressure of 217 hPa, methyl acetate is expected to evaporate quickly from surfaces.

A Henrys Constant of 6.43 Pa m3/mol at 20 deg C is calculated from the data on the vapour pressure and water solubility of methyl acetate given in Section 1. Consequently, the substance is moderately volatile from an aqueous solution.

No bioaccumulation potential is to be expected due to the measured log Kow value for methyl acetate of 0.18. On the basis of this value the Koc is calculated as 12.99 l/kg and the partition coefficients can be calculated according to the organic carbon content in the individual environmental compartments.

Accumulation

No investigations on bioaccumulation are available. The measured log Kow of 0.18 does not provide any indication of a relevant bioaccumulation potential.

The calculated Koc value of 12.99 l/kg also does not indicate that a significant geoaccumulation potential is to be expected for methyl acetate. The substance may be washed out from soil to groundwater by rainwater depending on the elimination in soil by degradation and distribution.

Atmosphere

Due to the atmospheric half-life (t1/2 = 74 to 94 days), abiotic effects on the atmosphere, such as global warming and ozone depletion, are not to be expected in connection with methyl acetate

For n-Heptane: Log Kow: 4.66; Koc: 2400-8100; Half-life (hr) Air: 52.8; Half-life (hr) Surface Water: 2.9-312; Henry's atm m3 /mol: 2.06; BOD 5 (if unstated): 1.92; COD: 0.06; BCF: 340-2000; Log BCF: 2.53-3.31

Atmospheric Fate: Breakdown of n-heptane by sunlight is not expected to be an important fate process. If released to the atmosphere, n-heptane is expected to exist entirely in the vapor phase, in ambient air. Reactions hydroxyl radicals in the atmosphere have been shown to be important. Night-time reactions with nitrate radicals may contribute to the atmospheric transformation of n-heptane, especially in urban environments. n-Heptane is not expected to be susceptible to direct breakdown by sunlight

Terrestrial Fate: n-Heptane is expected to be broken down by biological processes in the soil; however, evaporation and adsorption from soil are expected to be a more important fate processes. n-Heptane will be slightly mobile to immobile in soil.

Aquatic Fate: Breakdown of n-heptane by water is not expected to be an important fate process.

Biological breakdown may occur in water; however, evaporation is expected to be a more important fate process. The evaporation half-life for the substance from a model river is 2.9 hours and from a model pond is 13 days. In aquatic systems, n-heptane may partition from the water column to organic matter in sediments and suspended solids

Ecotoxicity: Concentration of the substance in aquatic life may be important in aquatic environments. The substance is moderately toxic to goldfish; however n-heptane has low toxicity to golden orfe, western mosquitofish, Daphnia magna water fleas, and snail. The substance is toxic to opossum shrimp.

For Propane: Koc 460. log

Kow 2.36

Henry's Law constant of 7.07x10-1 atm-cu m/mole, derived from its vapour pressure, 7150 mm Hg, and water solubility, 62.4 mg/L. Estimated BCF: 13.1.

Terrestrial Fate: Propane is expected to have moderate mobility in soil. Volatilization from moist soil surfaces is expected to be an important fate process. Volatilization from dry soil surfaces is based vapor pressure. Biodegradation may be an important fate process in soil and sediment.

Aquatic Fate: Propane is expected to adsorb to suspended solids and sediment. Volatilization from water surfaces is expected and half-lives for a model river and model lake are estimated to be 41 minutes and 2.6 days, respectively. Biodegradation may not be an important fate process in water

Ecotoxicity: The potential for bioconcentration in aquatic organisms is low.

Atmospheric Fate: Propane is expected to exist solely as a gas in the ambient atmosphere. Gas-phase propane is degraded in the atmosphere by reaction with photochemicallyproduced hydroxyl radicals; the half-life for this reaction in air is estimated to be 14 days and is not expected to be susceptible to direct photolysis by sunlight. DO NOT discharge into sewer or waterways

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
methyl acetate	LOW	LOW

Bioaccumulative potential

Ingredient	Bioaccumulation
methyl acetate	LOW (LogKOW = 0.18)

Mobility in soil

Ingredient	Mobility
methyl acetate	MEDIUM (KOC = 3.324)

SECTION 13 Disposal considerations

Waste treatment methods

Product / Packaging disposal

- DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first
- Where in doubt contact the responsible authority.
- Consult State Land Waste Management Authority for disposal.
- Discharge contents of damaged aerosol cans at an approved site.
- Allow small quantities to evaporate.
- DO NOT incinerate or puncture aerosol cans
- ▶ Bury residues and emptied aerosol cans at an approved site.

SECTION 14 Transport information

Labels Required

Marine Pollutant HAZCHEM

Not Applicable

Land transport (ADG)

Version No: 5.6 Page **14** of **16** Issue Date: 20/12/2022 Print Date: 20/12/2022

TensorGrip TC42 500ml Aerosol Spray Adhesive

UN number	1950	
UN proper shipping name	AEROSOLS (contains LPG (liquefied petroleum gas))	
Transport hazard class(es)	Class 2.1 Subrisk Not Applicable	
Packing group	Not Applicable	
Environmental hazard	Not Applicable	
Special precautions for user	Special provisions 63 190 277 327 344 381 Limited quantity 1000ml	

Air transport (ICAO-IATA / DGR)

UN number	1950			
UN proper shipping name	Aerosols, flammable (co	ntains LPG (liquefied petroleum gas))		
	ICAO/IATA Class	2.1		
Transport hazard class(es)	ICAO / IATA Subrisk	Not Applicable		
	ERG Code	10L		
Packing group	Not Applicable			
Environmental hazard	Not Applicable			
	Special provisions		A145 A167 A802	
	Cargo Only Packing Instructions		203	
	Cargo Only Maximum Qty / Pack		150 kg	
Special precautions for user	Passenger and Cargo Packing Instructions		203	
	Passenger and Cargo Maximum Qty / Pack		75 kg	
	Passenger and Cargo Limited Quantity Packing Instructions		Y203	
	Passenger and Cargo	Limited Maximum Qty / Pack	30 kg G	

Sea transport (IMDG-Code / GGVSee)

UN number	1950	
UN proper shipping name	AEROSOLS (contains LPG (liquefied petroleum gas))	
Transport hazard class(es)	IMDG Class 2.1 IMDG Subrisk Not Applicable	
Packing group	Not Applicable	
Environmental hazard	Not Applicable	
Special precautions for user	EMS Number F-D, S-U Special provisions 63 190 277 327 344 381 959 Limited Quantities 1000 ml	

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

•	
Product name	Group
methyl acetate	Not Available
naphtha petroleum, light, hydrotreated	Not Available
LPG (liquefied petroleum gas)	Not Available

Transport in bulk in accordance with the ICG Code

Product name	Ship Type
methyl acetate	Not Available
naphtha petroleum, light, hydrotreated	Not Available
LPG (liquefied petroleum gas)	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

Version No: 5.6 Issue Date: 20/12/2022 Page 15 of 16

TensorGrip TC42 500ml Aerosol Spray Adhesive

Print Date: 20/12/2022

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australian Inventory of Industrial Chemicals (AIIC) naphtha petroleum, light, hydrotreated is found on the following regulatory lists Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Chemical Footprint Project - Chemicals of High Concern List Australian Inventory of Industrial Chemicals (AIIC) LPG (liquefied petroleum gas) is found on the following regulatory lists

Chemical Footprint Project - Chemicals of High Concern List

Australian Inventory of Industrial Chemicals (AIIC)

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

National Inventory Status

National Inventory	Status
Australia - AIIC / Australia Non-Industrial Use	Yes
Canada - DSL	Yes
Canada - NDSL	No (methyl acetate; naphtha petroleum, light, hydrotreated; LPG (liquefied petroleum gas))
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	No (naphtha petroleum, light, hydrotreated)
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	Yes
Vietnam - NCI	Yes
Russia - FBEPH	Yes
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.

SECTION 16 Other information

Revision Date	20/12/2022
Initial Date	16/05/2022

SDS Version Summary

Version	Date of Update	Sections Updated
4.6	20/12/2022	Acute Health (eye), Acute Health (inhaled), Acute Health (skin), Acute Health (swallowed), Classification, Environmental, Fire Fighter (fire/explosion hazard), Handling Procedure, Ingredients, Physical Properties

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

ES: Exposure Standard

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level

LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value

LOD: Limit Of Detection OTV: Odour Threshold Value

BCF: BioConcentration Factors

BEI: Biological Exposure Index

AIIC: Australian Inventory of Industrial Chemicals

DSI: Domestic Substances List

NDSL: Non-Domestic Substances List

IECSC: Inventory of Existing Chemical Substance in China

EINECS: European INventory of Existing Commercial chemical Substances

ELINCS: European List of Notified Chemical Substances

NLP: No-Longer Polymers

ENCS: Existing and New Chemical Substances Inventory

KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals Version No: **5.6** Page **16** of **16** Issue Date: **20/12/2022**

TensorGrip TC42 500ml Aerosol Spray Adhesive

Print Date: 20/12/2022

PICCS: Philippine Inventory of Chemicals and Chemical Substances

TSCA: Toxic Substances Control Act

TCSI: Taiwan Chemical Substance Inventory

INSQ: Inventario Nacional de Sustancias Químicas

NCI: National Chemical Inventory

FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

Powered by AuthorITe, from Chemwatch.